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Abstract. Phase-space distributions (Wigner functions) for eigenstates of the diagmagnetic 
hydrogen atom at k e d  scaled energy have been obtained for the intermediate regime in 
between regularity and full chaos. States localized on the three major fixed points of the 
classical Poincare surface of section have been considered. While previous numerical work 
was primarily concerned with phase-space localization on period orbits, here the oscillatory 
structure (quantum fringes) forms the main subject. The fringes are delocalized relative to 
the dominant positive structures. Although the latter are strongly localized on frxed points 
and their associated invariant manifolds, the fringes permeate the whole energy surface. 
Fringes originating in the ergodic part of phase-space experience an abrupt change in 
character, in addition to the expected fall in amplitude, within stable islands. As a result, 
a single quantum state can provide a striking map of the global structure of phase-space. 
Phase-space is partitioned into relatively strong irregular Scar fringes in the ergodic region 
and weaker regular Airy type fringes inside stable islands. Quantum probability distributions 
near bifurcations and confluences have also been examined. A comparison with Husimi 
distributions has been carried out and it is shown that the latter have lost some dynamically 
interesting structures. 

1. Introduction 

The Poincark surface of section (SOS) has played a preeminent role in studies of the 
classical dynamics of systems which exhibit ‘soft chaos’. These systems experience a 
gradual transition from integrable to chaotic motion, as some parameter is varied 
(Gutmiller 1990). Consequently there is an intermediate regime between completely 
integrable motion, where phase space is densely filled with tori, and chaos, where ergodic 
trajectories fill the whole energy surface on the SOS. 

In between these extremes. stable islands coexist with ergodic regions in a mixed 
phase space. Here the KAM theorem regulates the break-up of tori near resonances into 
chains of elliptic islands and unstable fixed-points. This process recurs on increasingly 
finer scales-indeed structure on infinitely fine scales is one of the hallmarks of classkal 
chaos. It is the quantum behaviour in this intermediate regime which concerns the work 
here. For a quantum system the Heisenberg uncertainty principle precludes simulta- 
neous knowledge of momentum and position, p and q, on scales finer than Planck’s 
constant ti, placing a limit on quantum representations of the classical SOS. 

Nevertheless there has been extensive work on quantum phase-space probability 
distributions and their relation to the classical SOS. Two particular examples have been 
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singled out: the Wigner distribution and the related Husimi distribution (see Hillery el 
a/ 1984 for a comprehensive review of their properties). 

In brief, the Wigner function for a given eigenstate i (Wigner 1932) is the Weyl 
transform of the wavefunction and is obtained from the wavefunction as follows: 

Wi(p,  q)=  I/(Zirli)" '€'f(q+L/2)Yi(9-L/2) exp(-b. d/li) dNd. i 
It is normalized as 

1 WP,  4) dNp dNq= 1 

and is orthogonal for different eigenstates. 
In addition, when projected down thep or the q axis it yields the probability density 

in the position or momentum representation, respectively. These requirements mean 
that it cannot be positive everywhere. a perceived drawback for its interpretation as a 
probability distribution. In fact it oscillates within the energy surface with spacing 
dependent on R making its graphical representation more difficult. For this reason, 
attempts to represent it, for all but the simplest cases, have to date been limited to the 
strongest structures. Previous numerical investigations concentrated on phenomena 
such as localization on ton or fixed points (Schweizer et a/ 1993, Jam et a/ 1993). Here 
the fringes and associated negative probability were little more than an embarrassment 
and since in the regular to intermediate regime they are quite weak, they could easily 
be overlooked, particularly if they were evaluated by means of a numerical Fourier 
transform. 

Wigner functions were investigated theoretically for the integrable regime by Berry 
(1977) and Ozorio de Almeida and Hannay (1982). They were shown to be peaked on 
tori but 'decorated' by an oscillatory pattern of fringes. Within tori, a semiclassical 
approximation by Berry (1977), predicted an Airy pattern of oscillations. Berry (1989a) 
also showed that in the ergodic limit an Airy pattern on the energy surface is recovered 
from the contribution of short period orbits if the periodic orbits are damped out by 
smoothing over a limited energy range. However, there has been much interest over 
the last decade in the probability enhancements (scars) due to unstable periodic orbits 
(Heller 1984). 

For studies of these scars, the alternative probability distribution, the Husimi distri- 
bution, has proved most popular (Geisel et aI1986, Leboeuf and Saracen0 1990, Muller 
1992, Muller et a1 1993). It is obtainable from the overlap between the wavefunction 
and a coherent state, and effectively represents a Gaussian smoothing of the Wigner 
function. Takahashi~(l989) has discussed many of the relative advantages of the Husimi 
distribution over the Wigner function. Principally the Husimi is posilive definite and the 
smoothing out of the oscillatory structure will make the classical limit better behaved. 
However, the Husimi distribution does depend significantly on the smoothing width 
adopted (de Aguiar and Ozorio de Almedia 1990). It is shown below by comparison 
of numerical results, that, though less troubling to interpret as a probability distribution, 
the Husimi smoothing may remove interesting dynamical information for finite values 
of li which is readily apparent in the Wigner function. 

Hutchinson and Wyatt (1980) investigated the Wigner distributions for the Henon- 
Heiles Hamiltonian. They reported only the strongest few 2-d contours on the SOS, 

which showed that individual states were localized on tori in the regular regime but 
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relatively more spread-out in ergodic regions. Schweizer et a1 (1993), Jans et a1 (1993) 
and Monteiro (1992) examined localization on periodic orbits for diamagnetic atoms 
and molecules. In Monteiro (1992), wavefunctions for a Rydberg molecule were 
obtained by the R-matrix method in the form of an expansion over Sturmian functions. 
These were then transformed into scaled semi-parabolic coordinates 
p,  v = ( ~ / 2 ( r k ~ ) ) ’ ’ ~  where is the Sturmian parameter, and thence to an expansion 
over coupled one-dimensional harmonic oscillator states : 

Y=Z c m ~ , n ( p ) ~ , ( v )  exp-(v2+p2)/2. 
The Wigner functions are then. given analytically. Hence the Wigner function can be 
calculated to high accuracy. The hydrogen atom was investigated here using the same 
procedure-the wavefunction is much simpler to calculate than those of non-hydrogenic 
systems since it~is obtained by direct diagonalization of the Hamiltonian in a basis~of 
Sturmians (Clark and Taylor 1982) and can even be obtained directly in a basis of two- 
dimensional harmonic oscillator states (Wintgen and Friedrich 1986). 

The problem of the hydrogen atom in a strong magnetic field has proved exception- 
ally suitable in studies of soft chaos. A scaling transformation of the position and 
momentum p - + p ~ ” ~  r + ry-’/’ makes the classical Hamiltonian dependent only on a 
single parameter, the scaled energy, E =  Ey-*l3. The dynamics undergo a transition from 
integrability to full chaos as E ranges from -m to 0. The Hamiltonian in scaled semi- 
parabolic coordinates takes the form for l,=Ol 

H= (p ;  +p:y2-  E (  v2 +p* )  + (1/8)( vZp4+p2114) =2. 

In figure 1 a set of classical SOS taken through the p =O plane, obtained by Schweizer 
et a1 (1988), have been reproduced for comparison with the quantum results. The 
problem of the diamagnetic hydrogen atom has been extensively reviewed elsewhere 
(Hasegawa et a1 1989, Friedrich and Wintgen 1989). However, for the features of 
interest here the details of atomic physics are not central, so the problem will be 
simply described in terms of its classical surfaces of section, which share many general 
characteristics of Hamiltonian systems with soft chaos. 

. The Poincark SOS show the transition to chaos. Figure 1 shows that for E = - ] ,  

phase-space is filled with tori. There are three major fixed points indicated in figure 1 
as VI, RI and C (using the notation of Holle et a1 1988, where orbits were associated 
with ‘vibrator’ (V) or ‘rotator’ (R) quantum states). 

The elliptic fixed point at the centre of the section (VI) corresponds to a periodic 
orbit parallel to the magnetic field. The other major elliptic fixed point (RI) at the 
centre of the two other islands corresponds to a periodic orbit perpendicular to the 
magnetic field. Finally the hyperbolic fixed point on the separatrix between the islands 
corresponds to a near-circular (C) unstable periodic orbit. The surfaces of section show 
that chaotic trajectories gradually spread out around the C fixed point. The central 
island vanishes near &=-0.39, where the orbit parallel to the field (VI)  becomes 
unstable. At energies ~>-0.127 the island centred on R1 is destroyed and the SOS is 
completely filled by ergodic trajectories. These short-period classical periodic orbits are 
responsible for well studied modulations of the energy level spectrum of hydrogen, 
RI in particular being responsible for the observed quasi-Landau modulations of the 
photoabsorption spectrum of diamagnetic Rydberg atoms. 

The quantum picture is slightly more complicated. The scaling transformation can 
still be carried out and it is possible to calculate spectra of levels corresponding to a 
fixed scaled energy, i.e. corresponding to a given classical regime (Wintgen and Friedrich 
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1987). However each level will correspond to a different effective value of fi. In scaled 
coordinates, the usual quantization condition S=Jp dq=nfi becomes S= y- ’ l3 J p  dq= 
y-”3Jpdq=y-1’3S(z); i.e. the scaled action S(E)=n y”’?Z. In atomic units ( f i= l )  
there is an effective value of f i= $I3. So higher energy levels (corresponding to smaller 
y for fixed E )  approach the semiclassical f i+O limit. 

In the lower energy regular regime, the energy levels supported by the large stable 
islands are approximately given by the quantization of Miller (1975) for an isolated 
stable orbit. Summing all traversals of such an orbit gives rise to a set of harmonic 
oscillator-like energy levels. For the diamagnetic hydrogen atom they may be charac- 
terized by two quantum numbers n, K, i.e. S ( ~ ) z n y ” ~ + ( K +  1/2)a +P(a/2) where 
here a is the winding number of the orbit and p the Maslov index. 

2. Results 

Figures 2(a)-(f)  represent the pattern typical of the regular regime. It shows a set of 
Wigner functions (same coordinates as figure 1) for neighbouring energy levels at E =  

-0.5 associated with the perpendicular orbit (RI). Figure 2(a) shows the 185th level 
above the ground state, which corresponds to K=O and shows localization on the 
elliptic fixed point of RI. Figures 2(b)-(J) represent. in sequence, levels 180, 188, 183, 
187, 184. They show localization on progressively larger tori (i.e. larger values of K) 
centred on the fixed point, converging on the separatrix. The action taken around the 
loop of the torus differs (roughly) by integer values of the winding number. At this 
energy the parallel orbit (VI) also gives rise to a similar sequence of concentric tori. 

A selection from both sets of these tori was shown in Jans et a1 (1993). However 
in that case the fringes were not obtained since the Wigners were calculated numerically. 
Only the strongest 9Yh or so of the probability density was calculated so only the tori 
were shown. However, in figure 2 all the fringes are shown, by plotting all the positive 
structure. White indicates negative values within the energy surface, and zero outside, 
since the Wigner function beyond the energy surface was not calculated for any of the 
states considered here. 

The pictures show a phase-space permeated by regular, evenly spaced oscillations. 
The Wigners are plotted on a linear scale, using IO colour ‘bins’, with the lightest grey 
shade containing the lowest 10% in intensity but with a cut-off of the maximum. 
Hence this lowest bin can encompass variations in intensity of several orders of magni- 
tude. Outside the tori the fringes are extremely weak, especially fringes outside the 
smaller tori. The weakest oscillations are those outside the central fixed point of figure 
2(a), where the oscillations are 10-6-10-7 of the maximum. Within tori the fringes are 
stronger and there is a characteristic pattern of concentric rings which may be compared 
with the Airy fringe pattern predicted by Berry (1977). These levels correspond to 
effective values of fiz0.035. In comparison, the total phase space area in the box=@. 
This fringe pattern repeats itself in other parts of the spectrum and is very much a 
characteristic of the particular torus. The patterns are, however, parity dependent. For 
example, within odd-parity tori, two sets of concentric circlei rather than just the one 
in figure 2 are apparent. 

There is of course a gradual evolution with decreasing h as the number of tori 
supported by each island increases. The number of concentric rings in each torus 
depends on its X value, with the largest number associated with the separatrix state. 
Figure 3(a) and 3(b) show two Wigners for the separatrix state at.E= -1 corresponding 
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Figure 2. Wigner functions (similar coordinates to figure I )  for e se1 of diamagnetic hyd- 
rogen atom quantum states associated with the stable p e i d i c  a i b t  perpendicular to the 
magnetic field (RI)  for E =  -0.5. White indicates negative values inside the energy surface 
and zero outside: ( a )  185th level; (6) 180th level; ( e )  188th level; ( d )  183rd level; (e) 187th 
level; (f) 1841h level. 
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Figure 3. Wigner functions Cor two quantum states at E = - I  associate3 with the near 
circular orbit (C), showing variation of fringe spacing with A ;  (a) 75th state (1=0.041); 
(b)  215th state (fi=0.024). 

to the near circular orbit C. Figure 3(0) is level 75 above the ground state, corresponding 
to fi=O.O41. Figure 3(b) is level 215 corresponding to fi=O.O24. Regular fringes cover 
both sides of the separatrix which at this energy is bounded by stable islands on either 
side. 

Away from the regular regime, the fringe character changes dramatically. Below, 
the three major fixed points are discussed separately: 

The unstable fixed poinf C .  The evolution of the fringes is shown in figure 4. Three 
states which are predominantly localized on C for different values of the energy ( E =  

-0.5, -0.4 and -0.3, respectively) and 8-0.03-0.04 are shown. The left-hand side 
shows the strongpositive structure, i.e. only the strongest 90% of the positive probability 
distribution (the scale is the same, with black corresponding to the same probability 
for all three Wigners). On the right all the Wigner function is shown on a scale amplified 
by a factor of IO’. In the latter case, zero values outside the energy surface are indicated 
in grey in order to emphasize negative structures, which are cast in white. 

The figures on the left show that the positive values of the quantum phase-space 
distribution are strongly localized on the classical hyperbolic fixed point and its invariant 
manifolds. The fringes however fan out to fill the whole of phase-space. In figure 4(a) 
(~=-0.5)  the central island is still large and the fringes are regular (i.e. similar to the 
Airy patterns inside tori) on both sides of the separatrix. However, as the ergodic region 
spreads and the islands of stability shrink there is a sharp change in character between 
the oscillations within and outside the stable islands. Within the ergodic region the 
fringes are relativefy strong, but form complex patterns; these stronger oscillations 
associated with the unstable periodic orbit are referred to as scar fringes below. 

However, inside the stable islands there are oscillations which are not simply weaker 
versions of the scar fringes. They are still of regular, evenly spaced character. Since 
these are not the obviously associated with periodic orbit scar, they are referred to as 
island fringes below. The result in figure 4 is quite a striking ‘map’ of the global structure 
of phase-space. 
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Figure 4. Wigner functions (similar coordinates lo figure I )  for states associated with the 
scar of the unstable near-circular periodic orbit (C) showing the clear division of phase 
space by scar fringes in the ergodic region and island fringes inside stable islands. On the 
left hand side only the strongest 90% of the positive probability is plotted showing localira- 
lion on the hyperbolic fixed paint and invariant manifolds (black = I in arbitrary units). 
On the right-hand side an enhanced scale (black= IO-') is used. Grey outside the energy 
surface=O, white inside the energy surface-negative values: (a) ~ = - 0 . 5  (level 182, h =  
0.035); (b)  &=-0.4 (level 156. 1=0.04);  (e) &=-0.3 (level 210, li=O.O39). 
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There are large variations in fringe intensity. For figure 4 the scar fringes are 2-3 
orders of magnitude weaker than the maximum, and the island fringes are in turn about 
1-2 orders of magnitude weaker in turn than the scar fringes. In the semiclassical limit, 
the regular island should be empty as the motion is excluded by classical barriers. 
However, for finite li dynamical tunnelling through such phase-space barriers is 
allowable (Davies and Heller 1981). For a given E the fringes within the stable islands 
were found to decrease in strength with decreasing 6, though this was not investigated 
quantitatively here. 

It is also possible to follow a given state as E is increased (i.e. keeping S ( E ) / ~ ” ~ W  
constant. The fringes then become stronger as the island of stability shrinks. The general 
progression is for the island fringes closest to the ergodic region to become enhanced 
and then to be engulfed by the scar fringes. In fact the spread of scar fringes is accompan- 
ied by a rapid increase in the ratio of the volume of ‘negative probability’ relative to 
total probability of the Wigner function (insofar as we may be allowed to interpret the 
Wigner function as a probability distribution!) integrated over the energy surface. This 
provides a sort of indicator for the ‘ergodicidity’ of a quantum state: for low values of 
E ,  the ratio is typically less than 1% (e.g. for RI  in figure 2(a) it is about w4). As a 
wavefunction becomes more delocalized for higher values of E it  approaches a value of 
the order of unity. Of course the difference between positive and negative intensities 
must remain equal to unity throughout since the Wigner function is normalized. A 
meaningful comparison with the volume of phase-space occupied by chaotic orbits 
would have to take in the whole of phase-space, not just an arbitrary surface of section, 
and would be computationally expensive, since each Wigner surface of section here 
required about 30 minutes on a large mainframe (a Convex 3840 or Cray-YMP). 

The stablejwstableperiodic orbit VI. The periodic orbit parallel  to^ the magnetic field 
experiences a series of bifurcations for E >  -0.392, becoming unstable over limited 
energy intervals but recovering stability intermittently. Well below the first bifurcation 
the periodic orbit is stable and the states with K=O are strongly localized on the elliptic 
fixed point of the central island, but surrounded by a weak background of island fringes. 
As the ergodic region around C grows, the scar fringes spread into the ergodic region 
(here the term ‘scar’ is used loosely since the orbit is still stable). Above the bifurcation 
the strong localization is not only on the hyperbolic fixed point but also on the invariant 
manifolds. 

Figure 5 shows two Wigner functions for the V1 orbit. using the same scale and the 
same parameters as figure 3 (except that for the representation of the strong positive 
structures on the left-hand side only the lowest 5% is cut off). Figure 5(a) illustrates 
the behaviour of states near the bifurcation point. It represents the 208th state above 
the ground state (A=0.036) for &=-0.4. Like other K=O states near the bifurcation 
point it exhibits very broad localization about the invariant manifolds (the diagonal 
structures in the centre of figure 5(a)). Berry (1989) calculated the form of fringes near 
an unstable fixed point and found that they would take the form of hyperbolae with 
the invariant manifolds as asymptotes. The fringe spacing was estimated as PQjli tanh I 
in coordinates P, Q where the stability matrix is diagonal and with eigenvalues expkd. 
Hence at the bifurcation, where I + 0 semiclassically the fringe spacing will diverge. 
The quantum fringes become very broad as seen in figure 5. At higher energies 
tanh I --t 1 and the spacing tends to a finite value -6’”. This would suggest that it may 
be possible to obtain an indication of the stability of a classical orbit from the width 
of Wigner fringes, but this possibility has not been quantitatively examined here-at the 
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Figure 5. Wigner functions (same scales and coordinates as figure 4 )  for stales associated 
with the orbit parallel to the field (VI). Lcft-hand side shows only strongest 95% of the 
positive probability. The right-hand side shows localization of the fringes on a scale 
enhanced by a factor of 1000: ( a )  208th state near the first bifurcation energy where fringe 
widths are predicted to diverge; (b) 207th state near confluence energy. 

values of h used here there is still considerable variation in the degree of delocalization of 
neighbouring K =  0 states of the VI  series. Classically, V1 recovers stability over narrow 
energy ranges for - 0 . 3 9 2 i ~ i O  but at these values of I ,  VI retains the character of 
an unstable orbit (e.g. 1oializa:iofi on invar;a:rl manifolds) throughout, for E >  -0.4. 

Figure 5(b) shows the 207th state (f i=O.O39) for &=-0.316. The same general 
pattern is apparent. The wavefunction is still strongly localized (>95%) on the fixed 
points and invariant manifolds. However, scar fringes fill all the ergodic region and 
island fringes now of magnitude 10% or so of the scar fringes are present in the stable 
islands. This scaled energy is especially interesting since there is a conRuence associated 
with the perpendicular orbit (RI)  which here has a rational winding number. The 
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confluences are discussed further below, but essentially one has the stable island sur- 
rounded by a chain of four elliptic islands interspersed by four hyperbolic fixed points. 
The scar fringes in figure 5(b) in actual fact remain well confined not only outside the 
stable island but also outside the island chain-as may be seen by a comparison with 
figure 6(a) (or a by comparison with the classical SOS at this energy which is shown in 
figure 6(c)) .  

The stable periodic orbit RI. The periodic orbit perpendicular to the magnetic field 
remains stable up to E =  -0.127. The elliptic fixed point at the centre of the island is 
associated with single quantum states given by the Millar quantization up to Dear that 
energy. The low energy pattern is illustrated in figure 2(a) and shows strong localization 
on the fixed point surrounded by very weak of maximum) island fringes. One 
would expect this strong localization to persist while the fixed point is surrounded by 
an island of size>>% However, here confluences studied by Schweizer et af play an 
interesting role. 

Schweizer ef a1 (1992) found that when the orbit R1 has a rational winding number, 
for scaled energy E =  E-" a confluence occurs and an unstable periodic trajectory disap- 
pears. One can represent this process on the classical Poincark map. Initially, at energies 
slightly below E,,., an island chain surrounds the central island of stability. Gradually, 
as the scaled energy approaches the hyperbolic fixed points approach the central 
elliptic fixed point, finally being absorbed at the confluence energy. 

For ~ = - 0 . 3 1 6  the winding number is ;. Figures 6(a) and 6(b) show the Wigner 
function 203rd level above the ground state (fi=0.039). Figure 6(b) shows only the 
strong positive structure, while figure 6(a) shows the whole Wigner function on an 
enhanced scale. In Figure 6(c)  the classical Poincark surface of section E =  -0.316, taken 
from Dando et a1 (1993) is shown for comparison. Finally, the corresponding Husimi 
distribution evaluated by taking the overlap with a coherent state is shown in figure 
6(d) .  For a basis of coupled one-dimensional harmonic oscillators the overlap with a 
coherent state takes a particularly simple form (Lebouef and Saracen0 1990) and for 
the states considered here it was at least an order of magnitude faster to evaluate than 
the Wigner function. 

It may be seen from figures 6(a) and 6(c) that the Wigner function matches remsrkl 
ably the form of the classical Poincar6 map at this energy. The elliptic islands of 
the chain appear as relatively strong negative features, while positive probability is 
concentrated in the central island as well as on the hyperbolic fixed points and their 
manifolds. The boundaries of the localization are now provided not by the central 
stable island but by the surrounding island chain-consistent also with figure 5(b),  
where the major phase space barrier is not the central stable island but the island chain 
surrounding it. Outside this barrier the island fringes have been completely replaced by 
the scar fringes. It must be said though that it is not clear at this point whether the 
barrier to the spread of probability from the central fixed point (or into the stable 
island in the case of figure 5(b)) is actually the island chain itself or some other phase- 
space structure such as a cantorus bordering it. 

The Husimi distribution, on the other hand, shows no trace of the island chain at 
all. Figure 6(d) has been plotted with a cut-off 1/1000th of maximum, so that the 
weakest contour would correspond to the outline of the island chain in figure 6(a),  (i.e. 
the black structure in figure 6(a)) .  The Gaussian smoothing has averaged ont completely 
the alternating positive/negative structures, leaving simply a distorted outline. The 
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7 ,  . 
Figure 6. Quantal and classical phase-space near a confluence energy ~ = - 0 . 3 1 6  (winding 
numkr of periodic orbit RI =;) where the main elliptic island is surrounded by an island 
chain: (a) Wigner function o f  203rd state showing the island chain; (h)  strongest positive 
structures of Wigner function; ( e )  Classical Poincark surface of section; ( d )  Husimi function 
of 203rd state showing that the island chain has been eliminated. 

Husimi distribution is more akin to the strongest Wigner structures, which are shown 
in figure 6(6). 

Figure 7 shows the Wigner functions (figure 7(a)) and Husimi distribution (figure 
7(b))  of the 206th level for &=-0.21, another confluence energy. However, here the 
winding number is : so in this case there is a chain of six elliptic and six hyperbolic 
fixed points surrounding the central elliptic fixed point and the rest of phase-space is 
almost all filled by chaotic orbits. Also it  is worth noting that at  this energy there is 
already a significant number of unstable periodic orbits and that finding states where 
a single scar strongly dominates a given quantum state is becoming progressively more 
difficult. However, for level 206, once again the Wigner function shows an island chain 
of the same form as that present in the classical SOS,  manifested in the form of alternating 
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Figure 7. 206th state at the confluence energy E =  -0.21 (winding number of RI  =$. Class- 
ically the main stable island centred on RI is surrounded by a chain of six small islands 
and six hyperbolic fixed points: (a) Wigner fundion showing chain of six islands; (b)  
Husimi function showing that the island chain has been chminatcd. 

negative elliptic structures in between positive hyperbolic fixed points. And once again, 
the island chain has been removed in the Husimi distribution. Hence the unphysical 
‘negative probability’ has been eliminated at  the cost of removing structures which are 
real since they correspond to features of the classical Poincark map. 

3. Conclusion 

The phase-space distributions for quantum states localized on the three main fixed 
points of the diamagnetic hydrogen Hamiltonian have been investigated numerically in 
the intermediate regime between integrability and full chaos, i.e. for - I  <E<-0.1. In 
addition, at  the values of A-0.03 considered here, scars are well localized on single 
states so only individual quantum states have been investigated. No energy smoothing 
has been carried out, but in principle it would be simple to consider superpositions of 
states or energy smoothed states. 

The Wigner fringes of single states fill all of phase-space either due to the non-local 
nature of the Wigner function or the spread of ergodic trajectories. They are of a very 
different character in the chaotic/ergodic part of phase-space relative to fringes within 
stable islands, where the oscillations are regular and evenly spaced. In figures 4 and 5 
one sees the large-scale structure of phase-space mapped out in a single state by relatively 
strong scar fringes on the one hand in the ergodic region and much weaker (by 10- 
1000 times) island fringes which resemble the Airy patterns of the regular regime. At 
this point the origin of the island fringes in a state dominated by the scar of a single 
unstable periodic orbit is unclear. They are similar to torus fringes yet are present even 
when there is no evident torus structure bordering them (e.g. Figure 5(a)). 

Here no spatial smoothing has been carried out so it is worth comparing the results 
with Husimi distributions. Interesting classical features in individual Wigner functions, 
including weak scars, can be bordered by strong negative structures and hence may be 
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distorted or blurred by spatial smoothing. Features such as alternating positive/negative 
island chains are especially vulnerable and are not apparent in Husimi functions for 
the values of h considered here. It is also worth noting the differing typical length scales 
of the scar fringes (which have a wider variation of length scales) and lhe,island, fringes 
which are quite regularly spaced. This may make the latter more easily :$m$jthed to 
zero. Plots of Husimi distributions for states localized mainly in the ergohc part-of 
phase space, e.g. C and V1 (as in figures 4 and 5 )  show that the wavefunction is 
essentially absent inside the stable islands, while the Wigner function shows significant 
island fringes within these regions. So the Husimi distribution not only removes class- 
ically interesting features, but it also smooths out quantum fringes. Since the latter take 
a different form in stable regions from that in unstable regions they are also dynamically 
interesting. 
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